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Introcluctior

Corrosion is a primary determinant of waste package performance
at the proposed Yucca Mountain Repository

> The most likely degradation process

> Controls the delay time for radionuclide transport from the waste
package

> Determines when packages will be penetrated and the shape size and
distribution of those penetrations

In this presentation a framework for the analysis of localized
corrosion is presented and demonstrated for a scenario

>  Water chemistry of mixed salt solutions (sodium chloride-potassium
nitrate)

> Time-temperature-relative humidity profiles for a hot, mid and cool
temperature waste package
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Materials performance at the proposed Yucca Mountain Repository
Is amenable to a familiar and effective analytical methodology

> Widely accepted in the energy, transportation and other industries

Three components comprise the analysis
> Definition of the performance requirements

> Determination of the operating conditions to which materials will be
exposed

> Selection of materials of construction that perform well in those
conditions

A special feature of the proposed Repository is the extremely long
time frame of interest, i.e. 10,000’s of years and longer

> Time evolution of the environment in contact with waste package
surfaces

> Time evolution of corrosion damage that may result
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Repository Reference Design Concept

41 miles of
emplacement drifts

20 miles of
access drifts

Locomative




INe Prooosac Yucca Mouriain Rageosiieay

@ Proposed Repository is
about 300 m below the
surface and 300 m above
the water table

© Unsaturated zone, i.e.
fractures and pores in rock
are partially filled with water

© Desert area with about 18
cm of rain per year

@ Atmospheric pressure

@ Ambient waters are dilute
and near neutral pH

© Concentrated waters can
form by condensation,
deliquescence and
evaporation
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Seclceirournc or Ni-Cr-Mo Alleys

@ Alloy 22 belongs to a family of Ni-Cr-Mo alloys

> Earlier alloys include C-276 and C-4 and later alloys include
Inconel 686, Alloy 59, Hastelloy C-2000 and MAT-21

> Alloy 22 (N06022) is a solid solution of Ni, Cr, Mo and W as the
main alloying elements

> Cr-Mo-W in Alloy 22 act synergistically to provide resistance to
localized corrosion such as crevice corrosion

@ Large industrial equipment in service for many years in
harsh environments without corrosion

> Alloy 22 has great toughness and over 50% elongation before
failure

> Can be hot or cold formed and is weldable by many methods

> Can be fabricated into large structures and components
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@ Radionuclides are fully isolated if
there are no penetrations

> Even penetrated package can limit
radionuclide movement

@ Corrosion rates of passive metals
are extremely low

> Realistic rates are less than 1 ym/yr
(a millionth of a meter per year) and
much less

> Alloy 22 layer is 2-cm thick (a stack
of 12 U.S. quarters)

@ Corrosion rates of approximately 16,000 to 160,000 years to
0.01 ym/year are measured in penetrate the thickness of one
exposures of over 5-years at the U.S. quarter for a corrosion rate
Long Term Test Facility at Lawrence of 0.1 to 0.01 um/yr

Livermore National Laboratory
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IREPOSITETA

Seepage
Post-thermal Barrier)

Deliquescence

In-Crik Frecipitotes/ata
El

One long, slow heating/cooling
cycle

> Packages cool to ambient over
several thousands of years

Waste packages on support
pallets

> No immersion in waters
No moving parts

Low heat fluxes, slow heating
and cooling, and modest thermal
gradients

Radiation effects at waste
package surface negligible after
a few hundred years

Limited amount of water moving
through the rock

Limited salts and minerals
carried into drifts by incoming
water and dust
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>  Waste Package at 101°C when Drift
Wall cooled to 96°C

> Critical Corrosion Temp 90°C

> Temperature-RH conditions
>  Time when drift wall reaches 96°C
>  Critical Corrosion Temp for Alloy 22
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220 | | | I T 110
@  When drift wall is below boiling 200 — - 100
temperature (96°C), dripping/seepage L | | ——— "
can occur [ E I ) . w _
@ Dripping/seepage can contact waste g —+ lf;i L :§
package surface é Ed : w g
>  Where both capillary barrier and %m il |y ’ £
drip shield are inoperative =8 I ] e
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> If waste package temperature Time (yr)
above critical corrosion
temperature
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evolution
@ Drift wall is below boiling at year 750

> Waste Package at 101°C
> Relative humidity 65%

@ Waste Package is at 90°C at year 1375
> Relative Humidity 84%
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Consopiration  IERNGRESE ON @ Ambient Waters:
CaCO, precipitates
> Dilute solutions
Na, Ca, Mg, SO,, CI ‘ Na, Mg, CO,, SO, CI ‘
> Na-Ca-Mg-HCO;-CO,-CI-NO;-SO,
7N TN > Near neutral pH
Na, Ca, Mg, CI Na, Mg, SO,, CI Na, Mg, SO,, CI Na, CO,, SO,, CI Q WaterS Can be Concentrated
> Modified during movement
J— > Thermal-chemical processes
l Dilute Water \'Z' . .
o - @ Modifications on waste package
- 8
/ L \. surface
HED E':é‘.’,i’& ) ; i“fili )  Q C’;?;‘:.‘li‘f__,," ®© Chemical and electrochemical
il: ] processes
S E_ | CaMgCINO3 \Na,K,CI.NOa )




Relative Humidity (%)

Siolution Cheamisiry Princioles
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@ T-RH Profiles Related to Brine Solution Compositions for
Sodium and Potassium Base Salts
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The Temp-RH at any time fixes the
possible waters. Can follow the
trajectory with time

Drift wall 96°C at 750 years;

Waste Package at 101°C;
Relative Humidity 65%

Number of non-corrosive solutions;
Sodium chloride with low nitrate

ritical Corrosion Temp 90° ' i
Critical Corrosion Temp 90°C solutions can be corrosive

at year 1375; Relative Humidity 85%




Dacision-Traa Analysis

@ A decision-tree for localized corrosion

> Are environments and crevices present to induce
localized corrosion?

»> Consider conditions in moist layers of particulate and
deposits

> If localized corrosion initiates, will it persist?

»> Consider stifling and arrest processes as the
corrosion proceeds

> What amount of metal penetration occurs?

> What is the size and distribution of corrosion sites?




Dacisiorn-Traa Aralysis

@ A decision-tree for localized corrosion

drips
on WP
Thermal | O Capillary  |["© Drip no o Seepage |grips
Barrier Barrier Shield on WP on WP
yes yes yes

Low Nitrate

- Sulfate

- Na, K, Cl, NO;

- Na, K, Mg,Cl, NO4

Waters
CAN

Dilute Waters
Carbonates
Moderate Nitrate

- Sulfate

-Na, K, Cl, NO;

- Na, K, Mg,Cl, NO4

No Localized Corrosion

Initiate
Crevice Corrosion

Ecorr positive enough

Severe crevices are
present

yes

no

Evaluate initiation,
propagation, stifling
and arrest

Determine evolution
of corrosion damage
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Presented a framework for the analysis of localized corrosion

Demonstrated the analysis for a scenario
>  Water chemistry of mixed salt solutions
> Time-temperature-relative humidity profiles for waste packages

Localized corrosion on waste packages is restricted to finite time
periods

> Corrosion conditions at key time periods in proposed Repository

> Corrosion analysis during period IV-cool down/dripping and seepage
Decision-tree analysis for corrosion damage evolution

> For those time periods when localized corrosion can be supported

> Based upon the temperature and possible water chemistries

> Apply decision-tree analysis to determine the evolution of corrosion
damage




