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Yucca Mountain'Background

Designated site for long-term isolation of high-level
radioactive waste

Proposed geologic repository o S
located in a >400-m-thick zone ™ §
of unsaturated volcanic tuffs

Repository performance relies
on multiple barriers

> Engineered barriers

> Natural barriers

Objectives of the OST&I Natural Barriers Thrust Area

> Evaluate aspects of natural system that lead to enhanced
repository performance




DriftiShadowiConcept

@ Capillary forces may prevent seepage of UZ water into rock
openings at Yucca Mountain

> “Seepage exclusion” occurs at rock/air interface or at fracture
junctions within the rock mass

@ Should result in uneven distribution of water in the rock mass
surrounding openings

> Zones of increased water
saturation & flow rates

> Zones of decreased water
saturation & increased
residence times
(drift shadow)

@ Benefits performance by
increasing travel times
beneath waste packages
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Testing the Drift:Shadow Concept

@ Multiple OST&I Drift Shadow investigations

> Laboratory & field experiments require scaling to
low-flow conditions at Yucca Mountain

> Studies of small natural voids require scaling to
emplacement drift dimensions

@ Use isotopic and chemical variations around natural,
meter-scale cavities (lithophysae) in welded tuffs

> Whole-rock U-series compositions of tunnel-wall samples

> Pore-water compositions of underground dry-drilled core




Numencaliodeling

@ Numerical simulations used to predict drift-shadow scaling

> Analytical solutions of Philip et al. (1989) used to simulate
flow in a fracture-matrix continuum

> Allows advective-diffusive exchange between flow regimes
> Assumes no seepage into cavities

@ Model results indicate that drift shadows should be present

under cavities > ~70 cm in diameter
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Tunnel-Wall'Samples

@ Two areas with large cavities sampled from tunnel walls
of repository horizon (Topopah Spring Tuff)
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Spatial Distribution of'Subsamples

@ Subsamples obtained using hand-held rotary hammer
ESF 29+79
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UraniumerSERESHSOLOPES

@ U concentrations in host tuffs range from 4 to 5 ug/g
@ Chemical behavior of U
> Uinrock is present as insoluble tetravalent U*4

> In UZ, rock U can oxidize to hexavalent U*¢, which is highly
soluble as uranyl complexes (UO,CO; and UO,OH?)

> Greater mobility of U relative to many other elements

@ Natural radioactivity of U
> Three isotopes: 233U (99.27%), 23°U (0.72%), 234U (~0.006%)
> 234U and daughter 239Th form by alpha decay from 233U

238y -0> 234Th -B> 234p5 -B> 234y -a—> 230Th
4.5E9y 24.1d 6.69h 2.45E5y 7.5E4y

> Inrocks closed to transfer of mass, 234U/?38U activity ratios (AR)
are equal to 1.0 (secular equilibrium)




Effects ofi Water-Rock Interaction on U

@ U is leached from rock mass over time leaving lower
concentrations relative to other elements

@ Alpha-recoil effects allow preferential leaching of 234U
relative to 233U
> 234U/238U activity ratios (AR) > 1.0 in water and < 1.0 in rock

@ Degree of U and 234U loss depends on water-to-rock
mass ratio in rocks with uniform properties

Rlickigeoiing 234U/233U AR results expected in rocks
flux _ Increased . e e o e
P around individual cavities

Larger water-to-rock mass ratios;
greater #*U depletion, lower #*U/?**U AR

T — Smaller water-to-rock mass ratios;

i less 24U depletion, higher 23*U/23¢U AR

ux
(drift shadow)
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GenerallWholerRoecKkeUEharacternstics

@ Rock has different U characteristics in different areas
> Higher U and 234U/238U AR in ECRB Cross Drift samples
> Lower U and 234U/238U AR in ESF samples
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Whole-RockiChemical Compositions

Error bars = 3xSD GSP-1 rock standard
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Differences in Physical Properties

Data from USW SD-7, USW SD-9, and USW SD-12
(Flint, 19964a, b, and c)

@ U leaching and 234U loss by
recoil processes depend on
available surface area

oTptpmn
e Tptpll

@ Physical properties measured
from Tptpmn and Tptpll units
in core from nearby boreholes

Water Saturation (fraction)

> Relative water saturation

> Dry bulk density
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> Porosity 2 230
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Whole=RockeLlhzzURelations

@ 234/238Y and 23°Th/238U AR are similar: 234U/230Th AR = 1.0

@ Data indicate leach rates were slow enough to maintain
radioactive equilibrium between 234U and daughter 23°Th

> Consistent with steady-

state leach models and 1.20
238 leach constants of o | eEsFao+s L
1-5x10°% yr- B0 e |
[ + ™
> Similar value obtained ‘; 1.10y L2 Subrepostory e 0{,@“"‘0
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rates of mass exchange o0
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DistributioniofizzU/ZcUNnNmne =WalliSamples

@ All whole-rock samples have 234U/%38U AR < 1.0
> Indicates ubiquitous flow and preferential 234U removal

> 02%34U notation used to emphasize small variations

@ Patterns of 234U distribution beneath cavities vary

A. -20 5
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> Increased flow s
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effect beneath 5
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(consistent with 03

-65 O

numerical model)

() OST&I 5234U = (34U/>%8U AR-1)%x1000




S/t UN VAl SISACETIngS

@ Cavity walls and ceilings analyzed to evaluate leaching
effects in areas of greater flow

> Greatest 234U depletion from cavity walls
> Intermediate 234U depletion from cavity ceilings

@ Data support concept that more water flows through
rock on sides of cavities
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DifferencesuneEUNbeEpletion

Greater long-term water fluxes around ESF 29+79 and ESF 30+18
relative to ECRB 16+15 and 16+17 based on:

> Greater U loss and 234U depletion in whole-rock samples

> Thicker secondary mineral coatings on cavity floors
Greater 234U depletion beneath ESF 30+18 related to seepage

> Thick calcite-silica coating reflects long-term seepage accumulation

> Data imply that drift shadows are not likely where seepage is common
Drift shadow effects are more prevalent in ECRB cavities with only
minor mineral coatings

]
(3]

]
(3]

3-to 4-cm-thick

mineral coating
on floor of
ESF 30+18
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Rore=VyaternSamples

@ New 6-m-long boreholes drilled between ECRB stations
16+10 and 16+18 (lower lithophysal zone)

@ Core beyond 2-m-deep dry-out zone was preserved for
pore-water extraction by ultra-centrifugation

@ Lithophysal cavities located by downhole video logging

@ Drift shadows should have lower moisture contents and
higher pore-water solute contents than adjacent rock
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Moisture Content & Pore-Water Chemistry

@ Preliminary results from a single 2-m-long core section
> 22 moisture measurements, 13 pore-water extractions
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Pores\VWaterProtiles

@ Solute concentrations correlate with moisture contents

> Lowest solute concentrations I *°F ek ; ds 2
in cavity-floor samples < 20k b 1; 2
e = ¢ -6 £
. . . S 15F 49 ‘o
> Evaporative concentrationin £ F ° : ¢ ‘-i ®
. - C % = =)
fragmented core (dry-drilled) § "t .", Lic : 1s §
Q 5 * o ° 12 §
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Numerical simulations predict small drift shadows
beneath meter-scale lithophysal cavities

Whole-rock U-series data document areas of greater and
lesser UZ water flow through densely welded tuffs

> Consistent with low rates of long-term, steady-state U loss
Tunnel-wall samples show evidence for

> Diversion of flow around natural cavities (drift shadow)

> Flow focusing beneath cavities where seepage is common

Drift shadows are likely to develop beneath cavities with
low seepage fluxes

Preliminary pore-water data show systematic differences
around a lithophysal cavity

> Moisture contents, chemistry, and 234U/233U AR values
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